(Pages: 3)

1503

Reg. No.:....

Sixth Semester B.Tech. Degree Examination, May 2012 (2008 Scheme)

Branch: COMPUTER SCIENCE AND ENGG.
08.604: Digital Signal Processing

Time: 3 Hours

PART – A

TRIVANDRUM-11 & Max. Marks: 100

Answerall questions. Each question carries 4 marks.

- 1. Define and sketch four standard elementary discrete time sequences.
- 2. Explain the time invariant property of a system.
- 3. List the differences between linear convolution and circular convolution.
- 4. What is the relation between impulse response and unit step response of an LTI system?
- 5. What is the relation between Fourier transform and Z-transform?
- 6. What is the relation between DTFT and DFT?
- 7. What is DIT radix-2 FFT?
- 8. Define FIR and IIR systems with examples.
- 9. Compare the direct form and linear phase structures of an Nth order FIR system.
- 10. What is the advantage of linear phase realization of FIR system?

PART-B

Answer any one full question from each Module. Each full question carries 20 marks.

Module - I

- a) Differentiate time variant and time invariant systems. Given the following linear systems, find which one is time invariant.
- i) y(n) = -5x(n-10)
 - ii) $y(n) = 4x(n^2)$.
 - b) For the following linear system, find the unit-impulse response, and draw the block diagram.

Deline and sketch tour standard elementary discrete time sequence
$$y(n) = x(n) + 0.5x(n-1)$$

- 12. a) Explain convolution sum.
 - b) The impulse response of an LTI system is $h(n) = \{1, 2, 1, -1\}$. Determine the response of the system to the input signal $x(n) = \{2, 1, 3, 1\}$.

Module - II

- 13. a) Find the Z-transform of the signal $x(k) = k b^k u(k)$ using differentiation property.
 - b) Compute the DFT of the sequence $x(n) = \{0, 1, 2, 3\}$. Sketch the magnitude and phase spectrum.
- 14. a) Define DFT of a discrete time sequence. So with a system state of a discrete time sequence.
 - b) Compute 8-point DFT of a sequence x(n) = {0, 1, 2, 3} by
 - i) DIT radix-2 FFT and
 - ii) DIF radix-2 FFT.

Module - III

- 15. a) Explain the realization of cascade structure of an IIR system.
 - b) Realize the direct form I and direct form II of the IIR system represented by the transfer function $H(z) = \frac{2(z+2)}{(z-0.1)(z+0.5)(z+0.4)}$
- 16. a) Explain different structures used for FIR filters.
 - b) Realize the following FIR systems with minimum number of multipliers:

i)
$$H(z) = \frac{1}{4} + \frac{1}{2}z^{-1} + \frac{3}{4}z^{-2} + \frac{1}{2}z^{-3} + \frac{1}{4}z^{-4}$$

ii)
$$H(z) = \left(1 + \frac{1}{2}z^{-1} + z^{-2}\right)\left(1 + \frac{1}{4}z^{-1} + z^{-2}\right)$$